Development of Kinetic Models For Biogas Production From Tofu Liquid Waste

Lukhi Mulia Shitophyta, Anisa Salsabila, Firanita Anggraini, Siti Jamilatun

Abstract


Abstract: Biogas promises bioenergy to be developed as a renewable fuel to reduce the fossil energy crisis. Biogas raw material can be derived from tofu liquid waste. Biogas is processed by anaerobic digestion. This study aimed to develop a simulation of the kinetic model variations of biogas production from tofu liquid waste. The results showed that the ascending limb of the exponential equation had a greater coefficient (R2 = 1) than the ascending limb of the linear equation (R2 = 0.9574). The descending limb of the linear equation had a better coefficient (R2 = 0.9574) than the descending limb of the exponential equation (R2 = 0.95). The Gaussian model had the greatest R2 of 0.9937. Logistic growth had the greatest coefficient (R2 = 0.9951) compared to modified Gompertz (R2 = 0.9817) and exponential rise to maximum (R2 = 0.9852) in the simulation of cumulative biogas production. The fit model for kinetic biogas production from tofu liquid waste is Gaussian Model.

Abstrak: Biogas merupakan salah satu bioenergi yang menjanjikan untuk dikembangkan dalam mengurangi krisis energi fosil. Bahan baku biogas dapat berasal dari limbah cair tahu yang diolah secara anaerobic digestion. Penelitian ini bertujuan untuk mengembangkan variasi model simulasi kinetika produksi biogas dari limbah cair tahu. Hasil penelitian menunjukkan bahwa persamaan eksponensial untuk grafik kenaikan memilki koefisien yang lebih besar (R2 = 1) dibandingkan grafik kenaikan dengan persamaan linier (R2 = 0,9574). Grafik penurunan pada persamaan linier memiliki nilai koefisien lebih besar (R2 = 0,9574) dibandingkan grafik penurunan pada persamaan eksponensial (R2 = 0,95). Model Gaussian menghasilkan nilai  koefisien tertinggi R2 = 0,9937. Logistic growth menghasilkan nilai R2 terbesar (0,9951) dibandingkan modified Gompertz (R2 = 0,9817) dan exponential rise to maximum (R2 = 0,9852) pada simulasi produksi biogas kumulatif. Model yang paling cocok untuk kinetika produksi biogas dari limbah cair adalah model Gaussian.


Keywords


anaerobic digestion; biogas; tofu liquid waste; kinetic model

Full Text:

PDF

References


Ahmed, S., & Kazda, M. (2017). Characteristics of on-demand biogas production by using sugar beet silage. Anaerobe, 46, 114–121. https://doi.org/10.1016/j.anaerobe.2017.04.016

Ali, M. M., Dia, N., Bilal, B., & Ndongo, M. (2018). Theoretical models for prediction of methane production from anaerobic digestion : A critical review. International Journal of Physical Sciences, 13(13), 206–216. https://doi.org/10.5897/IJPS2018.4740

Budzianowski, W. M. (2016). A review of potential innovations for production, conditioning, and utilization of biogas with multiple-criteria assessment. Renewable and Sustainable Energy Reviews, 54, 1148–1171. https://doi.org/10.1016/j.rser.2015.10.054

Choi, Y., Ryu, J., & Lee, S. R. (2020). Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. Journal of Animal Science and Technology, 62(1), 74–83.

Dababat, S. S. B., & Shaheen, H. Q. (2019). Biogas Production Using Slaughterhouse Wastewater Co-digested with Domestic Sludge. Journal of Civil Engineering and Construction, 8(1), 34–40.

Das, A., & Mondal, C. (2015). Comparative Kinetic Study of Anaerobic Treatment of Thermally Pretreated Source-Sorted Organic Market Refuse. Journal of Engineering, 2015, 1–14.

Das, A., Mondal, C., & Roy, S. (2017). Kinetic Study of Biogas Recovery from Thermo- chemically pre-treated Rice Husk Kinetic Study of Biogas Recovery from Thermo- chemically pre-treated Rice Husk. Indian Chemical Engineer, 0(0), 1–17. https://doi.org/10.1080/00194506.2017.1374218

Ejimofor, M. I., Ezemagu, I. G., & Menkiti, M. C. (2020). Biogas production using coagulation sludge obtained from paint wastewater decontamination : Characterization and anaerobic digestion kinetics ". Current Research in Green and Sustainable Chemistry, 3(May), 100024. https://doi.org/10.1016/j.crgsc.2020.100024

Ge, X., Xu, F., & Li, Y. (2016). Solid-state anaerobic digestion of lignocellulosic biomass : Recent progress and perspectives. Bioresource Technology, 205, 239–249. https://doi.org/10.1016/j.biortech.2016.01.050

Jijai, S., & Siripatana, C. (2017). Kinetic model of biogas production from of thai rice noodle wastewater (Khanomjeen) with chicken manure. Energy Procedia, 138, 386–392. https://doi.org/10.1016/j.egypro.2017.10.177

Kafle, G. K., & Chen, L. (2016). Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential ( BMP ) using different statistical models. Waste Management, 48, 492–502. https://doi.org/10.1016/j.wasman.2015.10.021

Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2019a). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90. https://doi.org/10.1016/j.procbio.2019.05.023

Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2019b). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90. https://doi.org/10.1016/j.procbio.2019.05.023

Kovács Veszelovszki, P., Keszthelyi-Szabó, G., & Szendrő, P. (2018). Enhancing Biogas Production Kinetic of Meat Industrialwastewater by Microwave Pretreatment. Hungarian Agricultural Engineering, 7410(34), 44–48. https://doi.org/10.17676/hae.2018.34.44

Kumar, S., Paritosh, K., Pareek, N., Chawade, A., & Vivekanand, V. (2018). De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production : An overview. Renewable and Sustainable Energy Reviews, 90, 160–170. https://doi.org/10.1016/j.rser.2018.03.049

Li, P., Li, W., Sun, M., Xu, X., Zhang, B., & Sun, Y. (2019). Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic digestion of vegetable crop residues. Energies, 12(26), 1–14.

Liu, Y., Fang, J., Tong, X., Huan, C., Ji, G., Zeng, Y., … Yan, Z. (2019). Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures. Bioresource Technology, 293, 122066. https://doi.org/10.1016/j.biortech.2019.122066

Moujanni, A., Qarraey, I., & Ouatmane, A. (2018). Anaerobic codigestion of urban solid waste fresh leachate and domestic wastewaters: Biogas production potential and kinetic. Environmental Engineering Research, 24(1), 38–44.

Oyejide, J. O., Orhorhoro, E. K., & Atadious, D. (2018). Mathematical Modeling Of Biogas Yield From Anaerobic Co- Digestion Of Organic Waste And Pig Dung. International Journal of Engineering Science Invention, 7(5), 30–38.

Shitophyta, L.M., & Maryudi. (2018). Comparison of kinetic model for biogas production from corn cob. IOP Conference Series: Materials Science and Engineering, 345, 1–6. https://doi.org/10.1088/1757-899X/345/1/012004

Shitophyta, Lukhi Mulia. (2020). Model Kinetika Produksi Biogas dari Limbah Makanan. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 4(1), 15–18.

Shitophyta, Lukhi Mulia, Hanafi, M., & Nugroho, Y. E. (2020). Optimization of biogas from corn stover using liquid and solid-state anaerobic digestion. Jurnal Program Studi Teknik Mesin, 9(1), 1–5.

Shitophyta, Lukhi Mulia, Purwanti, S., & Maryudi. (2019). Pemanfaatan Limbah Cair Tahu menjadi Biogas di Industri Tahu Murni Pak Min Jomblangan, Banguntapan, Yogyakarta. Jurnal Pengabdian Pada Masyarakat, 4(4), 541–546. https://doi.org/10.30653/002.201944.191

Taghinazhad, J., Abdi, R., & Adl, M. (2017). Kinetic and Enhancement of Biogas Production for The Purpose of Renewable Fuel Generation by Co-digestion of Cow Manure and Corn Straw in A Pilot Scale CSTR System. Int. Journal of Renewable Energy Development, 6(1), 37–44.

Ugwu, S., & Enweremadu, C. (2019). Biodegradability and kinetic studies on biomethane production from okra ( Abelmoschus esculentus ) waste. S Afr J Sci., 115(7), 1–5.

Ware, A., & Power, N. (2017). Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renewable Energy, 104, 50–59. https://doi.org/10.1016/j.renene.2016.11.045

Winquist, E., Rikkonen, P., Pyysiäinen, J., & Varho, V. (2019). Is biogas an energy or a sustainability product? - Business opportunities in the Finnish biogas branch. Journal of Cleaner Production, 233, 1344–1354. https://doi.org/10.1016/j.jclepro.2019.06.181

Yu, Q., Liu, R., Li, K., & Ma, R. (2019). A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews, 107, 51–58. https://doi.org/10.1016/j.rser.2019.02.020




DOI: http://dx.doi.org/10.22373/ekw.v7i1.8296

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Lukhi Mulia Shitophyta, Anisa Salsabila, Firanita Anggraini, Siti Jamilatun

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter