Production and Characterization of Adsorbent from Oyster Shell (Crassostrea gigas) Using Physics and Chemical Activation with ZnCl2 and Its Application for Removal of Hexavalent Chromium

Lia Handayani, Azwar Thaib, Nurhayati Nurhayati, Yayuk Astuti, Adi Darmawan

Abstract


Abstract: Oyster shell waste has been investigated as a raw material for making adsorbents that will be activated. Physical activation uses temperatures of 500 ºC, 600 ºC, 700 ºC, 800 ºC, 900 ºC and chemical activation uses ZnCl2 with a concentration of 1 %, 5 %, 10 % and 15 %. Based on the analysis of the characteristics that have been carried out for physically activated adsorbents, the oyster shell calcined at 800 ºC produces the best characteristics, it is a radius of 35.11 Å with a percentage of removal of 38.04 %, as well as the results of the FTIR, XRF and SEM analysis gives the best results among others. Whereas for chemically activated adsorbents, the use of activator ZnCl2 10% produces adsorbents with the best characteristics among others with a radius of 84.14 Å and removal percentage of 65.68 %, the best results for adsorbents activated using 10% ZnCl2 are also supported by analysis results given by FTIR, XRF, and SEM.

Keywords: Adsorbent; BET; Cr6+; Oyster Shell Waste; XRF

 

Abstrak: Cangkang tiram (Crassostrea gigas) telah diteliti sebagai bahan baku pembuatan adsorben yang akan diaktivasi secara fisika dan kimia. Pembuatan adsorben dengan aktivasi secara fisika menggunakan variasi suhu 500 ºC, 600 ºC, 700 ºC, 800 ºC dan 900 ºC. sedangkan aktivasi kimia yaitu menggunakan aktivator ZnCl2 menggunakan variasi konsentrasi 1 %, 5 %, 10% dan 15 %. Berdasarkan analisa karakteristik yang telah dilakukan untuk adsorben-adsorben yang telah diaktivasi secara fisika, cangkang tiram yang di kalsinasi pada suhu 800ºC menghasilkan karakteristik yang paling baik, yaitu radius pori-pori 35,11 Å dengan persentase penyisihan sebesar 38,04 %, begitu pula dengan hasil analisa FTIR, XRF dan SEM memberikan hasil terbaik diantara yang lain. sedangkan untuk adsorben-adsorben yang diaktivasi secara kimia, penggunaan aktivator ZnCl2 10% menghasilkan adsorben dengan karakteristik yang paling baik diantara lainnya dengan radius pori-pori 84,14 Å dan persentase penyisihan sebesar 65,68%, hasil terbaik untuk adsorben yang diaktivasi menggunakan ZnCl2 10 % juga didukung oleh hasil analisa dari FTIR, XRF dan SEM.


Keywords


Adsorbent; BET; Cr6+; Oyster Shell Waste; XRF

Full Text:

PDF

References


Açikyildiz, M., Gürses, A., & Karaca, S. (2014). Preparation and characterization of activated carbon from plant wastes with chemical activation. Microporous and Mesoporous Materials, 198, 45–49.

Afranita, G., Anita, S., & Hanifah, T. A. (2014). Potensi abu cangkang kerang darah (Anadara granosa) sebagai adsorben ion timah putih. Jurnal Online Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Riau, 1(1), 1–5.

APHA. (1985). Standard Methods for the Examination of Water and Wastewater (16th Edn). Washington, DC, USA: American Public Health Association.

Daud, Z., Abubakar, M. H., Kadir, A. A., Latiff, A. A. A., Awang, A., Halim, A. A., … Marto, A. (2017). Adsorption Studies of Leachate on Cockle Shells. International Journal of GEOMATE, 12(29), 46–52.

Ghafar, S. L. M. A., Hussein, M. Z., & Zakaria, Z. A. B. (2017). Synthesis and characterization of cockle shell-based calcium carbonate aragonite polymorph nanoparticles with surface functionalization. Journal of Nanomaterials, 2017, 20–22.

Gimba, C. E., Ocholi, O., Egwaikhide, P. A., Muyiwa, T., & Akporhonor, E. E. (2009). New raw material for activated carbon: I. Methylene blue adsorption on activated carbon prepared from Khaya senegalensis fruits. Ciencia e Investigación Agraria, 36(1), 107–114.

Handayani, L., Rahmawati, C., Nurhayati, N., Astuti, Y., & Darmawan, A. (2020). The Characterization of oyster shell (Crassostrea gigas) as adsorbent in the removal of Cr(VI) ions. A study of NaOH and H2SO4 activation effect. Elkawnie: Journal of Islam Science and Technology, 6(1), 77–84.

Handayani, L., & Syahputra, F. (2017). Isolasi Dan Karakterisasi Nanokalsium Dari Cangkang Tiram (Crassostrea gigas). JPHPI, 20(3), 515–523.

Handayani, L., Syahputra, F., & Astuti, Y. (2018). Utilization and Characterization of Oyster Shell as Chitosan and Nanochitosan. Jurnal Kimia Sains Dan Aplikasi, 21(4), 224–231.

Hanura, A. B., Trilaksani, W., & Suptijah, P. (2017). Characterization of nanohydroxyapatite from tuna’s Thunnus sp bone as biomaterials substance. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 9(2), 619–629.

Hu, C., Zhou, J., He, S., Luo, Z., & Cen, K. (2009). Effect of chemical activation of an activated carbon using zinc chloride on elemental mercury adsorption. Fuel Processing Technology, 90(6), 812–817.

Husna, A., Handayani, L., & Syahputra, F. (2020). Pemanfaatan tulang ikan kambing-kambing (Abalistes stellaris) sebagai sumber kalsium pada produk tepung tulang ikan. Acta Aquatica: Aquatic Sciences Journal, 7(1), 13.

Jung, J., Lee, J., Lee, G., Yoo, K., & Shon, B. (2007). Reuse of Waste Shells as a SO2 / NOx Removal Sorbent. J. Ind. Eng. Chem, 13(4), 301–322.

Marina Olivia Esterlita, & Netti Herlina. (2015). Pengaruh penambahan aktivator ZnCl2, KOH, dan H3PO4 dalam pembuatan karbon aktif dari pelepah aren (Arenga Pinnata). Jurnal Teknik Kimia USU, 4(1), 47–52.

Mohamad, S. F. S., Mohamad, S., & Jemaat, Z. (2016). Study of calcinations condition on decomposition of calcium carbonate in waste cockle shell to calcium oxide using thermal gravimetric analysis. ARPN Journal of Engineering and Applied Sciences, 11(16), 9917–9921.

Mohamed, M., Yousuf, S., & Maitra, S. (2012). Decomposition study of calcium carbonate in cockle shell. Journal of Engineering Science and Technology, 7(1), 1–10.

Mondal, S., Mondal, B., Dey, A., & Mukhopadhyay, S. S. (2012). Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes. Journal of Minerals and Materials Characterization and Engineering, 11(01), 55–67.

Nasution, J. H., & Iriany. (2015). Pembuatan adsorben dari cangkang kerang bulu yang diaktivasi secara termal sebagai pengadsorpsi fenol. Jurnal Teknik KImia, 4(4), 51–57.

Nordin, N., Hamzah, Z., Hashim, O., Kasim, F. H., & Abdullah, R. (2015). Effect of temperature in calcination process of seashells. Malaysian Journal of Analytical Sciences, 19(1), 65–70.

Pambayun, G. S., Yulianto, R. Y. E., Rachimoellah, M., & Putri, E. M. M. (2013). Pembuatan karbon aktif dari arang tempurung kelapa dengan aktivator ZnCl2 dan Na2CO3 sebagai adsorben untuk mengurai kadar fenol dalam air limbah. Jurnal Teknik POMITS, 2(1), 116–120.

Pambudi, D., Prasetya, A. T., & Sumarni, W. (2014). Adsorpsi Ion Cu(II) Menggunakan Pasir Laut teraktivasi H2SO4 dan tersalut Fe2O3. MIPA, 37(2), 105–114.

Pitaloka, A. (2011). Optimalisasi aktivasi karbon aktif tempurung kelapa dengan ragam suhu dan konsentrasi aktivator ZnCl2. IPB.

Rashidi, N. A., Mohamed, M., & Yusup, S. (2011). A Study of Calcination and Carbonation of Cockle Shell. International Journal of Materials and Engineering, 5(12), 1118–1123.

Rodriguez-Reinoso, F., & Silvestre-Albero, J. (2016). Activated Carbon and Adsorption. In Reference Module in Materials Science and Materials Engineering (pp. 1–14). Alicante, Spain: Elsevier Inc.

Surest, A. H., Wardani, A. R., & Fransiska, R. (2012). Pemanfaatan Limbah Kulit Kerang Untuk Menaikkan pH pada Proses Pengelolaan Air Rawa Menjadi Air Bersih. Jurnal Teknik Kimia, 18(3), 10–15.

Wang, J., Wu, F., Wang, M., Qiu, N., Liang, Y., & Fang, S. (2010). Preparation of activated carbon from a renewable agricultural residue of pruning mulberry shoot. African Journal of Biotechnology, 9(19), 2762–2767.

Widihati, I. A. G. (2008). Adsorpsi Anion Cr(VI) Oleh Batu Pasir Teraktivasi Asam dan Tersalut Fe2O3. Jurnal Kimia, 2(1).

Xu, X., Liu, X., Oh, M., & Park, J. (2019). Oyster shell as a low-cost adsorbent for removing heavy metal ions from wastewater. Polish Journal of Environmental Studies, 28(4), 2949–2959.

Yuangsawad, R., & Na-ranong, D. (2011). Recycling oyster shell as adsorbent for phosphate removal. In The 21th Thai Institute of Chemical Engineering and Applied Chemistry (pp. 1–5). Hatyai, Songkhla.




DOI: http://dx.doi.org/10.22373/ekw.v6i2.7333

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Lia Handayani, Azwar Thaib, Nurhayati Nurhayati, Yayuk Astuti, Adi Darmawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter