COMPARISON OF SUPPORT VECTOR MACHINE AND DECISION TREE METHODS IN THE CLASSIFICATION OF BREAST CANCER
Abstract
One of the most dangerous cancers in the world is breast cancer. This cancer occurs in many women, in some cases this cancer can also affect men, but it is very rare. The effects of this cancer are very dangerous for humans, in the worst case it can lead to death. So that serious prevention is needed against this cancer. One prevention can be done by early detection. This study aims to implement machine learning methods to detect breast cancer in women. The algorithms used are Support Vector Machine (SVM) and Decision Tree (DT). After classifying the data provided, a comparison is made to find out which machine learning method has the best performance. The data used comes from the Gynecology Department of the University Hospital Center of Coimbra (CHUC), and can be downloaded for free on the UCI repository website. The results of this study indicate that the SVM algorithm with feature selection obtains the best classification results by obtaining an accuracy of 87.5%, a sensitivity of 90%, and a specificity of 85%. Thus this research obtains good results to be able to help provide solutions to detect breast cancer.
Keywords
Full Text:
PDFReferences
F.Y. A'la, A.E. Permanasari, & N.A. Setiawan, A Comparative Analysis of Tree-based Machine Learning Algorithms for Breast Cancer Detection. l2th International Conference on Information & Communication Technology and System (lCTS). 2019.
B.A. Farahdiba, Y.S. Nugroho, Klasifikasi Kanker Payudara Menggunakan Algoritma Gain Ratio. Jurnal Teknik Elektro Vol. 8 No.2. 2016.
A. Perdana, M.T. Furqon, & Indriati, Penerapan Algoritma Support Vector Machine (SVM) Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia (Studi Kasus: RSJ. Radjiman Wediodiningrat, Lawang). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol.2, hlm. 3162-3167. 2018.
Neneng, K. Adi, R.R. Isnanto, Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM). Jurnal Sistem Informasi Bisnis. pp. 1-10. 2016.
A.M. Puspitasari, D.E. Ratnawati,& A.W. Widodo, Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol.2, No.2. 2018.
P.B.N. Setio, D.R.S. Saputro, & B. Winarno, Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5. PRISMA, Prosiding Seminar Nasional Matematika 3, pp. 64-71. 2020.
Rismayanti, Decision Tree Penentuan Masa Studi Mahasiswa Prodi Teknik Informatika (Studi Kasus: Fakultas Teknik dan Komputer Universitas Harapan Medan). Jurnal Sistem Informasi Vol.2. 2018.
R.Herbrich, & T.Graepel, Introduction To Machine Learning With Applications In Information Security. California: CRC Press. 2018.
M. Patricio, et al, Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer. Vol. 18, no.1. 2018.
I. Sutoyo, Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik. Jurnal PILAR Nusa Mandiri Vol. 14, No.2. 2018.
DOI: http://dx.doi.org/10.22373/cj.v5i1.8805
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Helmi Imaduddin
except where otherwise noted.